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SYNOPSIS 

The literature reveals no equation that expresses the influence of the diffysional boundary 
layer on diffusion-controlled sorption of dyes or other material by polymeric substrates 
from finite baths. In view of this mathematical void, a technique is proposed that approx- 
imates dimensionless sorption time as a function of fractional equilibrium uptake of diffusant 
by polymer, dimensionless dye bath exhaustion, and dimensionless boundary layer. The 
computational technique is based on relationships found in transitional kinetics and is 
shown to be applicable for sorption systems involving polymeric material of different geo- 
metrical shapes. To  illustrate the technique, dimensionless half-times of sorption are com- 
puted for the case of diffusant uptake by a cylinder. 

I NTRO DUCT1 0 N 

Diffusion-controlled sorption of dyes or other dif- 
fusants by polymeric material of various geometrical 
shapes can occur under both infinite and finite bath 
conditions. In the case of infinite baths, the concen- 
tration of diffusant at the polymer surface does not 
change during sorption. However, in the case of fi- 
nite baths, the concentration of diffusant at the 
polymer surface continuously decreases during the 
sorption process until an equilibrium between the 
concentration of diffusant in polymer and in the bath 
is achieved. 

Finite Bath Systems 

where ( M , / M ,  = f a )  is the ratio of the amount of 
diffusant in the polymer at time t and at equilibrium, 
respectively; D is the constant, concentration-in- 
dependent diffusion coefficient of the diffusant in 
the polymer; and a is the half-thickness in the case 
of a polymer film or the radius in the case of a poly- 
meric sphere or cylinder. The dimensionless alpha 
term is given by 

R 
K 

a = -  

where R is the ratio of bath to polymer volumes, Vb/ 
V,,, and K is the constant ratio of concentrations of 

When a finite bath sorption medium is ‘‘well 
stirred,” i.e., when no diffusional boundary layer ex- 
ists at the solid polymer surface, diffusant uptake 
by morphologically stable, homogeneous polymeric 
material can be expressed by the following functional 
relationship: 

dikusant between the polymer and the bath at equi- 
librium, cp/c,. Alpha also may be expressed by ( 1 
- E,)/E,, where Em is the fractional d - ~ u s t i o n  
of the bath at equilibrium. The computational forms 
of Eq. ( 1 1 for the case of the plane sheet, the sphere, 
and the cylinder are given in what follows. 

- f ,  = f (5 9 a) 
Mt 
M a  
-- ( Plane Sheet 

Wilson’ has provided the following equation for the 
case of sorption of diffusant by a plane sheet (film) 
under finite bath conditions: 
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- f m = l  Mt 
M a  
-- 

O0 2 a ( 1  + a)exp[-q;(Dt/a2)] 
( 3 )  1 + a + a2q; - c  

n = l  

where the qn’s are the nonzero positive roots of 

Sphere 

The corresponding equation for the sphere, as de- 
termined by Crank, is2 

a 6 a ( l  + a)exp[-q;(Dt/a2)] 
( 5 )  9 + 9a + a2q: - 2  

n=l 

where the qn7s are the nonzero roots of 

3qn 
3 + aq: 

tan(qn) = ~ 

Cylinder 

Wilson also has provided an equation for diffusant 
sorption by a cylinder under finite bath conditions’: 

- f a = l  Mt 
MO0 
-- 

( 7 )  
a, 4 a ( l  + a)exp[-qf(Dt/a2)1 

4 + 4a + a2q: - 2  
n = l  

where the qn’s are the positive, nonzero roots of 

in which Jo and J1 are zero- and first-order Bessel 
functions. 

Infinite Bath Systems 

In the case of infinite bath systems, the effect of the 
diffusional boundary layer on the rate of sorption 
or desorption of diffusants by polymeric materials 
is provided by the equations of N e ~ m a n . ~  These 
equations have been expressed in a notationally 
more convenient form by Crank.’ In functional form 
the relationship is given by 

where ( M t / M a  = f sat)  is the ratio of the saturation 
uptake by the polymer at a given time t and at  equi- 
librium, Dt/a2 is as previously given, and the di- 
mensionless parameter L is given by4 

where Db and Dp = D are the diffusion coefficients 
of the diffusant in the bath and polymer, respec- 
tively; K is the distribution coefficient of the diffu- 
sant between the bath and the polymer surface; a is 
the half-thickness in the case of a film or the radius 
in the case of a sphere or cylinder; and 60 is the 
diffusional boundary layer. For isothermal condi- 
tions, the only parameter in Eq. ( 1 0 )  that is a vari- 
able quantity is 6 D ,  the diffusional boundary layer. 
This imaginary layer is in reality nothing more than 
a gradient that exists between the concentration of 
diffusant in the bath and the concentration of dif- 
fusant at  the surface of the polymer. The layer tends 
to be inversely proportional to the velocity of flow 
of the bath by the polymer ~ur face .~  With decreasing 
flow of the bath, the boundary layer becomes 
“thicker,” and the dimensionless parameter L be- 
comes smaller. Equations ( ll  ), ( 1 3 ) ,  and ( 1 5 )  reveal 
that sorption (and desorption) processes become 
slower as L decreases. 

Plane Sheet 

Crank’s equation for diffusant sorption by a plane 
sheet (film) under the influence of a diffusional 
boundary layer can be written as 

where the ,&’s are the positive roots of 

Sphere 

Crank’s corresponding equation for the sphere is 
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where the Pn’s are the roots of 

&cot (&) + L - 1 = 0 (14)  

Cylinder 

For the case of diffusant sorption by a cylinder under 
the influence of a boundary layer, Crank’s equation 
may be written as 

where the Pn’s are the roots of the transcendental 
equation 

in which Jo and J1 again are zero- and first-order 
Bessel functions. 

When no diffusional boundary layer exists, i.e., 
when L = co, the terms 1/L and pi /L2 are equal 
to zero and consequently drop out of the infinite 
bath equations ( l l ) ,  (13 ) ,  and (15 ) .  The corre- 
sponding transcendental equations ( 12) ,  ( 14) ,  and 
(16)  must be suitably modified to account for an L 
value of infinity. 

It is unfortunate that no ready-made solution to 
the diffusion equation exists for computing dye up- 
take from finite baths for various values of L.  Many 
real sorption systems consist of finite baths in which 
the velocities of flow are insufficient to eliminate 
any boundary .layer that may be present. No com- 
putational solution exists for the functional rela- 
tionship given by 

Crank has suggested that finite difference or finite 
element techniques can be used to obtain numerical 
values to satisfy the relationship given in the pre- 
ceding .6 However, the literature does not appear to 
be replete with examples of solutions obtained by 
use of Crank’s suggested technique. 

The purpose of the present work is to provide a 
new, nonrigorous approximation technique that en- 
ables one to determine by iteration a dimensionless 
time for a given value of M t / M ,  under finite bath, 
boundary layer conditions. The technique is appli- 
cable to sorption of diffusants by polymeric solids 
of various geometrical shapes and is based on the 
physicochemical relationship between f and f Sat for 

continuously transitional systems, as revealed by an 
examination of transitional kinetics. 

TRANSITIONAL KINETICS 

Transitional kinetics is a form of kinetics that occurs 
when a sorption process abruptly changes from in- 
finite bath to finite bath kinetics. Such a phenom- 
enon can occur, for example, in dyeing acrylic fibers 
with basic dyes or in dyeing hydrophobic fibers with 
disperse dyes. McGregor and Etters7 were the first 
to explore transitional kinetics in dyeing of polyester 
fiber with disperse dye. These authors point out that 
disperse dyeing systems will exhibit infinite, finite, 
or transitional kinetic behavior, depending on the 
value of certain system  parameter^.^ Infinite bath 
kinetics will occur if 

where Co is the initial concentration of particulate 
and dissolved dye in the dye bath, Csat is the satu- 
ration solubility of the dye in the bath, and a is as 
previously defined. Finite kinetics will occur if 

and transitional kinetics will occur if 

The unique behavior of transitional systems offers 
a possible solution to the problem of tying together 
finite bath and infinite bath equations to achieve 
the desired goal of the present work. Dye uptake in 
the case of transitional systems may be described 
in terms of both fractional saturation uptake, faat, 

and fractional equilibrium uptake, f , . At the point 
of transition from an infinite bath to a finite bath, 
fractional saturation uptake is defined by 

fsllt = a [ ( C o / C s )  - 11 (21)  

and fractional equilibrium uptake is defined by 

Substitution of Eq. (22)  into Eq. (21)  results in the 
cancellation of the dye concentration ratios, result- 
ing in the more general equation 

fff, 
l + a - f ,  fsat = 
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For the condition 0 < a < co, Eq. (23) relates fsat 

to f m  for all fractional uptake values at transition. 
Equation (23) is the link that permits the tying to- 
gether of infinite bath and finite bath diffusion 
equation solutions. Although the equation has been 
derived for a transitional disperse dyeing system, 
the equation can be used in attempts to determine 
the effect of the diffusional boundary layer on finite 
bath kinetics. The use of the equation in this area 
is made possible by adopting the convention that a 
continuously transitional system, i.e., a system for 
which transition occurs for all values of M,/M,, is 
really equivalent to a finite bath system. Such a 
mathematical protocol appears to hold after the 
equivalency of fsat and f m  at transition has been es- 
tablished and the corresponding values of D t / a 2  for 
the finite bath system have been adjusted for the 
boundary layer effect. 

COMPUTATIONAL TECHNIQUE 

The following example will illustrate the proposed 
computational technique. Our goal is to determine 
the dimensionless time D t / a 2  associated with a 
fractional equilibrium value, f m, at an a value of x 
and an L value of y .  Such a dimensionless value of 
time can be represented as 

in which the subscripted chi term is used to represent 
the left-hand portion of the equation for notational 
convenience later. 

Step 1 

The use of Eqs. (3) ,  ( 5 ) ,  or (7)  iteratively deter- 
mines the value of dimensionless time corresponding 

to f m  for a equal to x and L equal to infinity. The 
dimensionless parameter can be designated as 

Step 2 

The use of Eq. (23) determines the value of fSat that 
corresponds to fa. 

Step 3 

Equations ( 11 ) , (13), or ( 15) iteratively determines 
the dimensionless time for f sat using an a value of 
infinity and an L value of y .  The parameter can be 
designated as 

Step 4 

Equations ( 11 ) , ( 13), or ( 15) iteratively determines 
the dimensionless time for f sat using a a value of 
infinity and an L value of infinity. The parameter 
can be designated as 

Step 5 

Using the subscripted values of chi given in Eqs. 
( 24) - ( 27) for notational convenience, the value of 
dimensionless time corresponding to f ,  for an a 
value equal to x and an L value equal to y is given 
by 

The preceding technique can be used to compute 
D t / a 2  for all values of M t / M ,  for given values of 

Table I Dimensionless Half-Time for Diffusant Uptake by a Cylinder as a Function of a and 1/L 

a 1/L = 0 1/L = 0.01 1/L = 0.04 1/L = 0.16 

0.0050251 
0.0101010 
0.0204081 
0.0416666 
0.0869565 
0.1904761 
0.4705882 
1.7777778 

co 

3.6745 X 
1.4609 X 
5.7742 X 
2.2557 X 
8.6183 X 
3.1596 X 
1.0789 X lo-' 
3.3029 X lo-' 
6.3058 X lo-' 

3.5530 X 
8.1532 X 
1.9720 X 
5.1083 X 
1.4283 X 
4.2369 X 
1.2724 X lo-' 
3.6227 X lo-' 
6.7249 X lo-' 

1.1940 X 
2.5559 X 
5.6040 X 
1.2673 X 
2.9769 X 
7.2841 X 
1.8329 X lo-' 
4.5637 X lo-' 
7.9672 X lo-' 

4.3679 X 
9.0256 X 
1.8841 X 
3.9778 X 
8.4862 X 
1.8209 X lo-' 
3.8874 X 
8.1078 X lo-* 
1.2726 X 10-1 
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a and L .  Values of D t / a 2  corresponding to M , / M ,  
= 0.5 are given in Table I for the case of the cylinder. 
Such dimensionless times often are referred to as 
half-times. For very low va!-les of dimensionless 
time, the exponential summation equations tend to 
be tedious to use. In such cases other equations based 
on Laplace transforms can be used. Urbanik has 
made significant contributions to the modern math- 
ematics of diffusion in this area? 

CO N C L U  DI N C REMARKS 

The purpose of the present work has not been to 
present a new theory of diffusion-controlled sorp- 
tion. Rather, the purpose has been to suggest a new 
technique by which the uptake of diffusants by 
polymeric materials under quite specific, finite bath, 
boundary layer conditions may be approximated. It 
is believed that the new technique may offer a means 
by which sorption systems can be modeled more fully 
than they have been in the past. Criticisms and im- 
provements to the proposed method no doubt will 
appear and will be warmly welcomed. 
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